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The small perturbation spectrum of a number of flows has recently been analyzed 
carefully [1-3]. At the same time, investigations for the boundary layer have 
been limited within the framework of linear perturbation theory to the neighbor- 
hood of the neutral curve although a spectrum analysis is of indubitable interest 
not only to find the stability criterion of a laminar stream, but also to solve a 
problem with initial data about the time development of an arbitrary small pertur- 
bation. In particular, the possibility of representing an arbitrary perturbation 
in terms of a system of basis functions is related to the question of the complete- 
ness of the system. The finiteness was proved [4] and an estimate was obtained of 
the domainof eigenvalue existence in an investigation of the boundary-layer stabil- 
ity and a deduction has been made about the finiteness of the small perturbations 
spectrum for boundary-layer flow on this basis. A sufficiently complete survey of 
the investigation of the neutral stability of a laminar boundary layer can befound 
in the monograph [5]. The small perturbations spectrum in a boundary layer flow 
is obtained in this paper by methods of the linear theory of hydrodynamic stabil- 
ity by using the complete boundary conditions on the outer boundary. It is shown 
that the small perturbations spectrum is finite for each fixed value of the wave 
number a. Singularities in the spectrum behavior are investigated for sufficient- 
ly small ~. 

It is usually assumed in investigations of boundary-layer stability that the perturba- 
tion on the outer stream boundary damps out as a solution of the inviscid problem 

~ - ~ Y .  
I 

The complete conditions for damping of the perturbations at infinity which were first 
formulated in [6] are considered in this paper: 
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where C = X + iY is the desired eigenvalue (Y<0 corresponds to exponential damping of 
the perturbations), and 6 is the boundary-layer thickness. The prime denotes the derivative 
with respect to y. 

The boundary-layer equations admit of self-similar solutions for flows around a flat 
plate, and affine profiles are obtained by the introduction of similarity transformations 
for the independent variable and the stream function ~ in the form [7] 
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n = Y  ~x; t ' = V - ~ - T g ' 1 ( n )  

This similarity transformation reduces the system of boundary-layer equations to an ordinary 

differential equation, 

2.f'" + . f f ' =  O, 

f = f = 0 for ~1=0;]'=I for N=6 , where the prime here denotes the derivative with 
respect to q. The longitudinal velocity component hence equals 

i a~ = / , ,  0 - < ~ 5 .  (2) 
u = g e -  7 

The a s s u m p t i o n  t h a t  t h e  f l o w  i n  t h e  b o u n d a r y  l a y e r  i s  p l a n e - p a r a l l e l  w i t h  t h e  p r o f i l e  (2) i s  
henceforth used. 

The hydrodynamic stability problem of plane-parallel viscous incompressible :fluid flow 
reduces to an analysis of the eigenvalue spectrum of the Orr--Sommerfeld equation. 

<pw--2a2~" + a % - - / a R e  [ (u--C)(~"--a=~)--u"~]  = 0 

with adhesion conditions on the wall ~(0)=~'(0)=0 and conditions (i) on the outer boundary. 
It is hence considered that the velocity is constant and equal to the potential flow velocity 
U outside the boundary layer for E>6 �9 The perturbations damp out at infinity if ?r>0. 
Here two-dimensional perturbations are considered the most dangerous, since the Squire theorem 
is valid in this case. 

Let us examine the case when the phase velocity X is close to one so that Ib] << lal , 
in greater detail. Then if only positive Yr is admitted, the continuous continuation of the 
boundary conditions as X passes through one is possible only for a>0 . If adO, as is actual- 
ly realized for sufficiently small values of the wave number a, then the boundary conditions 
will vary by a jump for the passage through X = i since Ye becomes discontinuous; in the 
neighborhood of X = i 

Ibl 
~' = 2 r  ?e -- sign b V-~I. 

Therefore, the spectrum of the damped perturbations cannot be continued continuously in terms 
of the wave number at which X = i. Let us call such a wave number e, limiting i For a<~. 
the spectrum for perturbations damping out at infinity apparently simply does not exist. 

If the constraint ?r~0 is removed, then the continuous passage through a, can be ac- 
complished upon selecting the branches 

b ~ 

v, = 2 V-rai' '~' = V-17fl. 

This corresponds to the fact that the perturbations damp out at infinity for X<I and 

grow for X>i . Hence, it was assumed that 

?~ = 2v--~; W = V 2 

but it should be recalled that perturbations with X>i have no physical meaning. The prob- 
lem was solved numerically by using the method proposed in [8]. 

The search for the spectrum was carried out by the method of making a transition in a 
parameter from the known spectrum for channel flow. On the outer limit of the boundary-layer 
the conditions for the perturbations were posed in the form 

rp' ~ A k.cp',/ ( i - - e ) ,  
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where A=--(y+a)/=?; B=--I/~?; sis the parameter to which conditions (i) correspond for e=0 
and the adhesion conditions correspond for e=i . An asymptotic expression is known for the 
spectrum [2] in a channel for ~<<i, which can be used to construct the whole small-perturba- 
tions spectrum by a continuous transition in a . Then performing a continuous transition in 
the parameter e for a fixed value of the wave number a, we realize the passage from the ad- 
hesion conditions at the outer boundary to the perturbation damping conditions at infinity. 
The perturbations in a channel are divided into two classes for e>>i : near the wall for which 
X~0, and near the axis with the phase velocity X-->i . The perturbations have the phase 
velocity - for all values of the wave number a, after the passage in the parameter 
s, for the near-axis modes, i.e., the modes obtained do not satisfy the physical requirement 
of perturbation damping at infinity and should be excluded from consideration. Therefore, 
there are no shortwave perturbations localized near the outer flow boundary in the boundary 
layer. The numbering of the spectrum modes for boundary-layer flow corresponds to conser- 
vation of the number of the spectrum mode from which the transition is accomplished. 

Represented in Figs. 1 and 2 are the dependences of X and Y on the wave number a for the 
first two spectrum modes at Re = 10 3. The displacement boundary-layer thickness 8, is taken 
as the characteristic scale. The appropriate spectrum numbers of the modes are indicated 
by the numbers. It is seen from Fig. 1 that such wave numbers a. exist for which X = 1 and 
the given spectrum mode vanishes for ~<~, since the physical conditions on the outer limit 
of the boundary-layer are not satisfied for X>I. As the spectrum number n increases, the 
corresponding limiting wave numbers ~.~ increase, i.e., ~.n_1<=.n . Therefore, a finite 
number of spectrum modes exists for each fixed wave number a. As Re-->0 the wave numbers 
~.n-->~ since no discrete spectrum exists in a fluid at rest in a half-space. And, conversely, 
as the Reynolds number increases ~,n decrease, i.e., the mode number grows with the increase 

in Re for a fixed wave number ~. 

The first spectrum mode at which flow instability in the boundary layer is realized for 
Reynolds numbers greater than the critical, turns out to be most dangerous. The critical 
values of the Reynolds and wave numbers were computed and their values are Re=519, ==0.304. 

The author is grateful to M. A. Gol'dshtik and V. N. Shtern for useful discussions of 

the results of the research. 
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